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This grant, which provided one half of the salary of a post-
doctoral physicist was aimed at exploring the usefulness of the
Massively Parallel Processor (MPP) at NASA Goddard Space Flight
Center for investigation of electronic structures and hyperfine
properties of atomic and condensed matter systems. Our major
effort during this period was directed towards the preparation of
algorithms for parallelization of the computational procedure we
have been using on serial computers for electronic structure
calculations in condensed matter systems. Before getting
involved in the more complicated Hartree-Fock procedure, it was
necessary for us, as outlined in the proposal, to gain experience
in parallel computation using a simpler and approximate method
termed Self-Consistent Charge Extended Huckel (SCCEH) method and
to benchmark the performance of the MPP for our purposes as
compared to the high-speed serial computer UNIVAC 1100/92 we have
been using for our work over the past few years.

About four months of the grant period was spent in
familiarizing ourselves with the language and operation of the
MPP. The MPP was accessed from our University through the
TELENET and SPAN networks. In the remainder of the period of the
grant, one of our main accomplishments was the adaptation of a
ma jor component of the SCCEH method, namely, the evaluation of
the matrix elements the Hamiltonian used in the variational
procedure employed to determine the electronic wave~-functions of
large molecules and clusters of atoms. This experience helped us
in developing a general algorithm for calculating two-center one
electron integrals that occur in the Hartree-Fock procedure,
which we are interested in carrying out on the MPP. Lastly, as
described in the proposal, our many-body atomic investigations
require fast evaluation of a very large number of two-electron
integrals of the coulomb and exchange types involved in the
matrix elements of the electron-electron interaction over ground
and excited state wave-functions. These integrals are usually
carried out by standard quadrature procedures for numerical
integrations. Towards the end of the grant period, we explored
the adaptation of Gausslan and Laguerre quadrature procedures to
the MPP for calculations of such integrals.

‘Detailed descriptions of these investigations and results
are described in the attached Appendix. These results were
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presented on 24 April 1987 before an internal panel of the Space
Computing and Image Analysis Division of the NASA Goddard Space
Flight Center consisting of Dr. Milt Halem, Mr. James Fischer and
associates. An article based on these results will be prepared
in the future after some additional investigatiomns, which
unfortunately have been slowed down by the non-availability of
support for personnel to work on this project.



APPENDIX

The work reported in this Appendix represents the joint
efforts of Dr. N. Sahoo (post-doctoral research assoclate),
Department of Physics, SUNY Albany, Dr. S.N. Ray of Systems and
Applied Scilence Corporation, Lanham, Maryland and Professor T.P,
Das, Department of Physics, SUNY Albany.

A, MPP-ADAPTION OF SELF-CONSISTENT CHARGE EXTENDED
HUCKEL (SCCEH) PROCEDURE

(I) The SCCEH Procedure

Thelsilf-Consistent-Charge Extended Hlickel (SCCEH)
procedure”,“, 1s a semi-empirical method to determine the
electronic energy levels and wavefunctions of a molecule. This
approach Is based on the valence shell approximation where the
one-electron Hamiltonian is defined only through its matrix
elements in the atomic valence shell orbital basis. These matrix
elements are not evaluated through explicit treatment of
electron~electron interaction but by relating them to
experimentally measured ionization energies of the pertinent
atoms and ions.

In this method the molecular orbitals (MO)Yf are expressed
as a linear combination of atomic orbitals (AO) ﬁk.
in the form v

AH;::EZ Crdjqéc (1)

in common with other LCAO procedures, the coefficients Cuc
representing MO coefficients which are treated as variational
parametars for calculating the minimum energy configuration of
the molecule. The values of q#bin the LCAOMO procedure for which
the total energy 1s minimum are obtained by solving the secular
equation:

;CF?(HL{ Si}}gﬁ):gﬁ (2)

where Hij and S;y in eq. (2) represent the Hamiltonian and
overlap matrix eiements respectively., The major computational
steps involved in solving equation (2) for Cu; (which in turn
determines the e from which all the electronic properties are
calculated) and £, (the one electron energy levels) for the
SCCEH procedure are the following.



1, Determination of H,,:
-

The Hamiltonian matrix elements Hié are constructed
empirically from the orbital ifonization énergles £, determined
from atomic data, and the charges 9, on atom {. The charge q on
any atom{ 1s obtained from the coefficents C,;, by using the
Mulliken approximation ﬂ
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where o and P represent spin states, nd,#

the populations of
rxh occupled orbital for the two different spin states,

and ZL
represents the valence charge on atom L.
The qL s are incorporated in H through the equations

o= € =1l C&- &)
K : (4)
Hy= 7 CHa+ By ) =9

2. The determination of S, .:

For the determination of H one needs to evaluate Si the
overlap integral between atomic orfbftals which is given by

3 5()( Cr)‘Xa(m A7 (5)

The atomic orbitals used in eg uations (1) and (5) are usually

taken as Slater type orbitals gSTO) but could equally well be
taken as Gaussi{an type orbitals” (GTO). The expression for an
STO 1is given by -

-l =% r
nzm( 6 )= N, T 'e v TN >!/Lm(9’ ?) (6)

and. that for a GTO 1s given by 2
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with a,+b,+c,= 4 y the angular momentum of the atomic orbital.
In equations (6) and (7), the exponents ;,, are chosen from
analysis of the nature and features of the wave-functions of the
atoms involved in the molecular system studied.

The overlap integrals are the simplest two center integrals
encountered in the molecular electronic structure calculations.
Since the evaluation of these integrals between a pair of atomic
orbitals are independent of each other, they can be computed in
parallel.

(1) Overlap integrals over STOs~-

The detailed formalism for numerical evaluation of overlap
integrals for Slater type orbitals is documented in the
literature”. After careful examination of different formulae
involved in the evaluation of such integrals, we decided on a
particular area where we can use the MPP very effectively. The
expression for the two center overlap integral can be
algebraically reduced to expressions involving one or more basic
two center integrals, known as reduced overlap integrals. The
reduced overlap 1integrals are finally expressed in terms of the
auxiliary functions Ak(F) and By (£) which are evaluated using the
following recurrence relations:

PAP) = KAL) +eF (8)

where

XA R ‘i‘SBR
Y= 2 (9)

and

B (0= N AL = A0

(10)

and Xz TAR——\SBR (11)
X

The expression for Ak(F) and Bk(X) are given by
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B (x>= Sl ‘aK e Y dy (13)

In the above expressions R is the separation between atoms A and
B, and 'SA and‘fB are the Slater exponents of any atomic orbital
centered on atom A and B respectively.

The expressions (8-13) can be easily evaluated in the MPP
with considerable saving of the computational time compared to a
serial processor by using the following algorithm.

For 128 basis functions, involving different jLN s
irrespective of their angular momentum symmetry, and X can be
constructed as a 128 x 128 matrix. Thus A,(P) and B, (X) can be
evaluated for 16,384 for X values simultaneously or 1n parallel
using the MPP. Once A () and B, (X) are evaluated, the A, (f) and
B, (X) for k#0 can be obtained using the recursion relations (8)
and (10). The A (f) and B, (X) can be evaluated simultaneously
for 16,384 values of f and X using the MPP. We have made
substantial progress in programming this part in parallel pascal
for MPP and the procedure will be called from the main FORTRAN
program residing in host VAX memory. We have not done any bench
marking yet for these integrals, but we expect the computation in
MPP will be much faster compared to the serlal processor from our
experience for overlap integrals using Gaussian orbitals
described next. Our main motivation behind the analysis of
overlap integrals involving Slater orbitals was to gain
experience in redesigning parallel algorithms for recursive
numerical procedures similar to the ones described above.

3. Overlap integrals over GTOs:

The MPP can be utilized more effectively for evaluation of
molecular integrals in general and overlap integrals in
particular when one uses Gausslan type of atomic basis functions.
In this case, all the molecular integrals can be analytically
expressed in terms of some basic Iintegrals, which can be
simultaneously evaluated using the MPP. We will describe first
the evaluation of overlap integrals between Gaussian functions
and in the following section discuss the generalization of this
procedure for other one electron two center integrals.

The overlap integrals between two Gaussian type functions
Ga and GB’ namely,

Sas J éboxéitsob‘c"%fdz (14)

of any symmetry can be expressed6 in terms of overlap integral
between two s-functions, <S|5> which is given by .

{sisd>= K Na g ( Ty )72 (15)



For example, the overlap integrals between Fé and S orbitals
on two centers and between Pz and Pz orbitals on two adjacent
centers A and B can be written in the form:

<2|s>————(f\6) (15 and (alzy= (35— 238 (RB)]) sisd

In the above expressions,

K= ‘CSATB/YA+TB> CPTB)Z

e
(16)

where (Kﬁ)z is the square of the distance between two centers A
and B, Ya and Ig are exponents in the Gaussian functions G, and
Gg» N, and Np are the normilization constants,

Y= KA—i' KB
and
CA—B>L: C ?— ‘§>c

The <sls> integrals are evaluated in the MPP using the following
steps.

) evaluate the distance matrix from which (Sﬁ)z is calculated.
) evaluate the 3, 3y matrix

) evaluate the 3A +S matrix

) evaluate the N,Ng matrix

) evaluate the K matrix

Since the MPP can do arithmetic operations involving 128X128
parallel arrays, the Gaussian functions are divided into blocks
of 128 Gaussians and all the parallel arrays or matrices involved
in the steps a—-e have 128X128 array dimension.

As an example, we will describe the algorithm for the evaluation
of the distance matrix for 128 points. For this purpose one
first constructs three 128X128 parallel arrays with each column
containing x, y or z coordinate of a single point. e.g.

[ij:x“' ) ‘__:D]n'u: %L, LE]nL:

(17)
for n=1, 128 and 1i=1,128,
For instance: » rﬂxi R xﬂzg ‘j
x Xpr -t Tizg l
Ccl- : . (i)
with 128 rows. ‘ x4 kz' - .- T 2428

One then calculates the transpose of matrices [C], [D], and [E]
from which



[+3=[3- (37 p1=[23- (237 ca3=E - 0o,

are obtained. One can easily see that

EX-]{_a: X;-X&/ Ey]l.a: b&’lj} and [:Z]L(j: Z,” Z(} (20)

Therefore the distance matrix for different centers can be
obtained from

[r] ‘:3: [X]Lﬁ* EXLFL[YJ‘&* D’l}*'tl] c;@ig (21)

In contrast to serial computation where the arithmetic operations
are carried over one data item, like X=X here we are evaluating
the difference between x-coordinates of ail the 128 centers
simultaneously. This leads to considerable saving in
computational time. A similar procedure is followed in carrying
out the steps b to d. Once the matrices in (a), (b) and (c) have
been evaluated, the matrix (e) can be obtained directly using Eq.
(16). The parallel pascal programs for these steps have been
written and tested on the MPP. It is straight forward to
calculate the overlap integrals <2z[S> and < 2(2> from ¢sls> using
the equation (15). 1In actual molecular calculations, the atomic
orbitals are expressed as linear combination of Gaussian '
functions 1like

A A B B B
A —
o ZEP- O(PLQ%C , 4}3 = 2 g, G9, (22)
The overlap integral betgeen4§1’and #ﬁgcan then be written as
Al 1B\ — Ad Al -D (23)
<¢¢ ¢3>“§%d‘° ‘?/<Q\°‘€W
Equati%n (23) can also be evaluated on the MPP by computing
< A\éy >, the overlap integrals between the primitives, and

s 7
then multiplying it with the df B matrices and performing the
approprlate contracted sum. %

Our bench-marking procedure has shown that these one
electron two center integrals can be computed 15 times faster in
MPP compared to UNIVAC 1100/91.

4, The Iterative Process:

After the evaluation of Si‘ by a MPP resident routine, the
Hii and Hj are evaluated from sgme initial charge state of the
atoms and Ihe secular equations (2) are solved to find out the
for the next cycle. The solution of equations (2) requiring the
diagonalization of a large matrix, which may be done faster on
the MPP using suitable parallel algorithm than the existing
serfial codes. We have been working on developing a parallel



pascal code_for matrix diagonalization using available parallel

algorithms.7

The MO coefficlents QNL thus obtained are used to determine
from equation (3) and the new H,. are constructed again using
equations (4) and the whole procéss 1s repeated until the charge
on each atom stabilizes within a chosen tolerance limit.

A host resident routine is used to carry out the iterative
process.

We have thus made considerable progress in adapting the
existing serial code for SCCEH procedure into the MPP., The novel
architecture of the MPP 1is exploited wherever it is possibla at
the present time.

(8) MPP ADAPTATION OF THE FIRST-PRINCIPLES HARTREE~FOCK
CLUSTER PROCEDURE FOR ELECTRONIC STRUCTURES OF LARGE MOLECULES
AND SOLID STATE SYSTEMS:

Our ultimate aim is to adapt to the MPP the first-
principles linear—-combinations of Atomic Orbitals-Molecular
Orbital (LCAOMO) Hartree-Fock procedure to study the electronic
structures of large molecules gnd atomic clusters used to
stimulate solid state systems. Our experience in parallel
evaluation of overlap integrals using the MPP has helped us to
make some progress in this direction. The major computational
effort involved in this procedure is the evaluation of qup,
the matrix elements of the Hartree-gock operator in the chosen
atomic basis set which are given by

9 °

2t

_JCPCI) C_V, )CPCI) Az dtad% —\-ZS?C:)C'—ZT )(})CI)O,Xo(aolz
+Z E E c. C I:QS‘PC\)#:COJ—. 4,(2)4) C2) 4% ,,hadzloh( dy. dz,

A os
jc;;co <}>cn> ¢CZ)4>C2) o dy d2, A, dg, 42,

(24)

In the above expression the first term is the kinetic energy
integral, the second term Is the potential energy integral and
the third and fourth terms are the two electron coloumb and
exchange integrals. The kinetic energy (K.E. ) integrals for
Gausslan type atomic orbitals can be expressed in terms of the
overlap integrals between S-type gaussian functions. The
evaluation of such kinds of integrals by MPP has already been



described in Appendix A. We are now developing a parallel pascal
code for the evaluation of these K.E. integrals from the overlap
integrals. We plan to develop parallsl pascal codes for other
electronic integrals in the future.

The total energy of a cluster of atoms and ions used to
simulats the {nfinite solid state system 1Is the sum of electronic
energy and the energy of repulsion (and attraction for opposite
charges) Vyy between the charge on the ions. The elactronic
energy 1s obtained by solving a set of Hartree-Fock equations,
whereas Vay is calculated using the expression,

N 217

iy 1T
Vi *Z?r' | B Rs |

(25)

Zy and RI being respectively the charge and position vector of
the Ith 1ion.

We have written a parallel pascal code for the MPP following the
algorithm described earlier for the evaluation of the distance
matrix. We found that this can be done 30 times faster compared
to the UNIVAC 1100/91 serial computer.

C. MPP Adaption of the Many-Body Procedure for Atomic Systems:

We have also been 1nterest°8 in adapting to the MPP the
relativistic many-body procedure for studying properties of
atomic systems. The most time-consuming computation in this
procedure 1Is that requiring the evalution of the matrix elements
of the ?&e fron-electron interaction involving three and four
excited state wave functions of an atom of the form:

_ * * 1. ¢ 3 0’3
e b o 1

and (26)

) Cl)drolfl
D'WCD Rz Y\zw (‘P—

In the above expression kl, k2, k3 and R4 refer to unoccupied
one—-electron excited states and ¢ to one of the occupied one-
electron states for the many-electron Dirac Hartree-~Fock
Hamiltonian.

10
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Usually these integrals are evaluated following th%
standard numerical procedures like Laguerre integrationl
quadrature. To gain experlence In designing parallel algorithms
for numerical integrations, we have concentrated on writing MPP
pascal codes for Laguerre quadrature involving simple fumnctions.
It will help us to develop suitable parallel codes for evaluation
of I3 and I, in equation (26). We will briefly describe the
algorithm for the simultaneous evaluation of

L= f%‘” i

on the MPP, for 128 different functions g;. The procedure can be
easily generalized ?%so for j + 128. If"one uses the Laguerre

integration formula'“, then equation (27) can be written as
N

Iaz i(wt exiﬁacx;)> ~ E &E} C’J(;_) (28)

N 1=1
1=| e

(27)

where xy are the zeros of Laguerre Polynomials, wy are the weight
factors. The number of terms n, in the summation 1s chosen
depending on the desired accuracy. We will choose n=128 for the
sake of clarity, but the procedure can be used for a smaller
number of n values, as is normally done in f%is field. The x

and w,e* are avallable from standard tables and can be stored
on the MPP as data. Each column of the 128X128 array of the MPP
will contain the 128 Xy and wieh'values such that

[c),=%
nd 1
L], mwie

for n=1 to 128 as {in section 3 of Appendix A. In equations
(29),[c] and [D] are 128X128 parallel array data items.

a (29)

If all the g.(x) in Eqs. (27) and (28) have the same
algebraic form dif%ering only by values of some specific
parameters, one can evalauate the values of g.(xy;) at 128 xy
values using the MPP. If they have different form, then one can
use the host VAX computer to evaluate them and transfer them to
the MPP. Let us assume that we have a parallel array data [G],
whose elements are

Calgy = ‘336*0 (30)

Now [H] = [C] * [D] * [G] will give us the quantity
fi(xi) ig Eq.(Zég for aii the 1%& functions at the 128 xy values.

Thus
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¢

A
[H]ca’ %gcxdwhe for 128 values of i and j.

From Eq. (28) it then follows that

I&: ZEH—BL& ' (31)

1
This addition can be easily done by repeafsdly using the
predeclared shift functions in MPP pascal language and adding
to the parallel array on which the shift operation 1is applied.
Thus:

Suppose (s1! = shife ([S]i—l, ny, o) where n; is chosen such that
in each successive shift operations we north shift the parallel
array by twice the number of rows of the previous shift

operation, that is, 0T 2ny until Nipr =64 -
: 7 el ¢
Then, [R]:Z [53 + ES] (32)
L=

where the resulting parallel array [R] will be such that

[Rl\f Ty for g= 1o 2s veldes

The number of arithmetic operations involved in carrying
out the numerical integration of 128 functions by the above
procedure is much less compared to the number of arithmetic
operations involved in the serlal computation. For example the
evaluation of [H] on MPP requires three multiplication operations
compared to 49152 multiplications on serial computers.,

Similarly, in the summation in equation (28) for 128 functions,
one needs only 7 addition operations compared to the 16384
required additions on serial computers. Thus numerical
integration of large numbers of functions will be much faster on
the MPP compared to the conventional serial processors. When one
uses smaller numbers of zeros of Laguerre Polynomials in Eq. (28)
one can increase the number j of functions to be integrated such
that all the processors in the array are properly utilized. We
hope to benchmark the performance of the MPP pascal program
following the above procedure in the future.

D. CONCLUSION

In the past one year we have made progress in using the MPP
efficiently for electronic structure calculations of atomic and
s0lid state systems, It is a different computing environment
than with the conventional serial computers used before and one
has to redesign the parallel algorithms and rewrite computer
codes to convert existing FORTRAN codes used for electronic
structure calculations. Non-availability of a scientific
subroutine library in MPP Pascal language makes the conversion
more difficult and time consuming. Thus we will devote further
efforts in the coming years to write suitable MPP Pascal



13

subprograms for many of the standard numerical procedures that
are required for our investigations.
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